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Abstract. We have described a convergent asymmetric synthesis of the polyol fragment of amphotericin B that utilizes a versatile

dienolate aldol addition reaction of furfural to rapidly assemble (he constituent polyol subunit. This strategy allowe for the efficient
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synthesis of the C,-C,; fragment of amphotericin requires only eleven steps and proceeds in 28% overall yield. © 1998 Elsevier Science
Ltd. All rights reser ved
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Amphotericin B (1) is the drug of choice for antifungal chemotherapy in life-threatening infections.
However, this prominent member of the polyene-macrolide antibiotics is poorly tolerated and elicits adverse
symptoms.!  With a rising number of fungal infections resistant to existing remedies, the necessity for
developing analogs with fewer undesirable side-effects is increasing. Additionally, synthetic strategies that
provide access to biologically active models to elucidate the mode of action of these natural products are
needed.? Several total and partial syntheses of 1 have been completed to date.? Stereochemical control in the
syntheses of the polyol subunit have primarily relied on either the use of starting materials from the chiral pool
or optically active epoxyalcohols prepared with the Sharpless asymmetric epoxidation process.

Structural analysis of 1 reveals that segment C,-C,, possesses a repeating stereoregular 1,3-diol motif
that is interrupted only at C,—C;. This distinctive feature of the polyol subunit suggests a convergent synthesis
strategy utilizing fragments 2 and 3 as coupling partners. Importantly, the latent symmetry in these allows for
the preparation of both from enantiomeric precursors. In this communication we report the implementation of
such a strategy leading to a convergent and efficient synthesis of the amphotericin C,—C,, polyol fragment.
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We have recently developed a catalytic, enantioselective process utilizing a Tol-BINAP+CuF, complex
generated in situ that effects the aldol addition of dienolate 4 to a broad range of aldehydes in up to 98% yield
and 95% ee (Eq l).‘4 In particular, the dienolate aldol adduct 6 is an attractive chiral building block for synthesis
as a consequence of the ready availability of furfural ($ 0.02/gram) and the well-known chemistry of the
aromatic heterocycle.> For example, oxidation of the electron-rich furan ring provides the corresponding
carboxylic acid. As a test of the utility of adducts such as 6 and a demonstration of the versatility and
experimental practicality of the aldol process, we embarked on a synthetic study leading to the convergent
construction of the amphotericin polyol.

The aldol addition of TMS-dienolate 4 to furfural (5) can be readily conducted on a multi-gram scale
utilizing as little as 2 mol% catalyst to furnish aldol adduct 6 in 94% ee (Eq 1). We have observed that the
dienolate adducts bearing the dioxenone moiety have a tendency to be crystalline and allow for ease of
enantiomeric enrichment. Therefore, a single crystallization from hexanes/ether (1:3) furnished optically pure
material 6 (>99 % ee by HPLC) in 95% yield S
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The enantiomeric furan-dienolate adduct, ent-6, obtained by employing the (R)-Tol-BINAP+CuF,
complex under otherwise identical conditions to those described above, was used for the construction of the C,~
C, polyol subunit of 1. Following a sequence of transformations analogous to those discussed for 6, acetonide
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10 was isolated in 81% overall yield from enr—6. Treatment of this substituted furan with ozone followed by
reduction of the isolated ester with LiAIH, provided 11 in 94% yield. This primary alcohol was oxidized to the
corresponding aldehyde which was transformed without purification to alkyne 2 using the ketophosphonate
reagent recently described by Bestmann (65%, two steps). 11112
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otericin polyol fragment 12a. Nevertheless, the hydroxyl
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In summary, we have described a convergent asymmetric synthesis for the polyol fragment of
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amphotericin B that utilizes a versatile dienolate aidoi addition of TMS-dienolate 4 to furfural (§) to rapidiy



7016

assemble the target molecule 13. This strategy allows for the efficient synthesis of large quantities of the
desired fragment while being inherently flexible to allow the construction of analogs. Moreover, the synthesis
of the polyol subunit 13 requires only eleven steps and proceeds in 28% overall yield.
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dienolate 4 (8.00 g, 37.0 mmol) in 10 mL THF was added dropwise followed by a solution of furfural
(2.49 mL, 30.0 mmol) in 5 mL THF. The solution was stirred at ~78 °C for 4 hr. Trifluoroacetic acid (5
mL) was added and the cooling bath was removed. After 5 min, 5 mL water was added and the mixture
was allowed to reach 23 °C during which time the progress of the desilylation was monitored by thin layer
chromatography. Upon completion, the mixture was diluted with 50 mL ether; the organic solution was
rcpedtcdly washed with a 0.5 M aq NaOH solution until the extracts reached pH 7. The combined ‘aqueous
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solutions (ca 100 mL) were extracted with 200 mL ether. The combined orgamc layers were washed with
brine, dried over anhvdrnnq Na.SQO. and concentrated in vacuo. The nnnnnﬁed material was filtered
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The combined 6.79 g (26.6 mmol, 95%) of 6 proved to be >99% ee as determined by HPLC: OD
CHIRALCEL column, hexanes/isopropanol 80:20, flow rate 0.8 mL/min, major enantiomer 8.3 min,

minor enantiomer 10.0 min. mp (not corrected) 52 SC; [a],® +27.8° (¢ = 0.46, CHCl,); IR (thin film) v
3406, 3000, 1711, 1632, 1392, 1378, 1277, 1203, 1146, 1014 906, 810, 744; 'H NMR (300 MHz, CDCl,)
8 1.61 (s, 3H), 1.65 (s, 3H), 2.56 (s, broad, 1H), 2.77 (m, 2H), 4.98 (t, J = 7.4, 1H), 5.30 (s, 1H), 6.27 (d, J
=3.2,1H), 6.32 (dd,J =1.8,3.2, 1H), 7.37 (d,/ = 1.7, 1H); ”(,NMK(75MHZ LDL13)0247 25.1, 39.8,

64.4, 95.4, 106.7, 142.4, 154.7, 161.2, 167.9; HRMS (CI) caled for C,,H,,O; (M+H)" 239.0919, found
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(7) Clemens, R. J.; Hyatt, J. A.J. Org. Chem. 1988, 50, 2431.

(8) Chen, K.-M.; Gunderson, K. G.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Chem. Lett. 1987,
1923.

—~
)
~—

4 287
Ty e

UT, 7,

{h) Harteel
) \U} O NIV RIVIS S

o~
— S

(9) The spectroscoplc properties of 9 match those described previously (cf. ref 3a).
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